
ISO/IEC JTC 1/SC 24/WG 9 N 116

ISO/IEC JTC 1/SC 24/WG 9 "Augmented reality continuum concepts and
reference model"
Convenorship: KATS
Convenor: Kim Gerard Jounghyun Mr

Information Model for Mixed and Augmented Reality (MAR) Contents Part 3:
Live actor and entity (Presentation)

Document type Related content Document date Expected action
Meeting /
Presentation

Meeting: VIRTUAL 21 Jul 2021 2021-11-03

https://sd.iso.org/documents/open/23832c1c-0932-43e2-ae28-3af0d41c8f7a
https://sd.iso.org/documents/open/23832c1c-0932-43e2-ae28-3af0d41c8f7a
http://sd.iso.org/meetings/78812

0

Information Model for Mixed
and Augmented Reality (MAR)
Contents Part 3: Live Actor and

Entity

ISO/IEC JTC1 SC24 Plenary Meeting

July. 21, 2021

Kwan-Hee Yoo(Chungbuk National University, Korea)

1

Status of this issue

1

Purpose Title ISO NUMBER & Stage

Propose concept and
architecture for
representing a live
actor and entity in
MAR

Information technology — Computer
graphics, image processing and
environmental representation — Live
Actor and Entity Representation in
Mixed and Augmented Reality

ISO/IEC JTC1 IS 18040

Propose nodes of
data structures for
implementing LAE
system in MAR

Information technology — Computer
graphics, image processing and
environmental representation —
Information Model for Live Actor and
Entity in Mixed and Augmented
Reality

ISO IEC NP 23490

2

On ISO/IEC 23490

2

ISO/IEC 23490 Information technology — Computer graphics, image

processing and environmental representation — Information Model for
Live Actor and Entity in Mixed and Augmented Reality

Cancelled

3

Future Direction

3

ISO/IEC 3721-3 Information technology — Computer graphics, image processing and

environmental representation — Information Model for Mixed and Augmented
Reality(MAR) Contents Part 3: Live actor and entity

Information model for LAE

is tightly related to information model for MAR

Propose new NP/CD as soon as possible

4

Scope
This document has an objective to extend the previous research project
and existing standard for improving the LAE information models on
Mixed and Augmented Reality scene/contents description. This
extension is enhancing the capabilities of LAE-MAR system more
reliable and putting system in advance stage of development.

✓ Improving LAE-MAR system working more effectively
✓ Allowing deep learning techniques to involve in system

process
✓ Using Virtual Reality (VR) technology to extend the

immersive experience to user
✓ Interaction ability between LAE and MAR models
✓ Standardization of using LAE-MAR system with defined

structures of nodes for LAR-MAR

5

Introduction

▪ Live Actor and Entity Representation in Mixed and Augmented Reality

(LAE-MAR) is a system that is designed to handle a comprehensive

representation of a live actor and entity (LAE) in a physical world by

observing the information through various sensors into mixed and

augmented reality (MAR). Especially, the system includes the architecture

of embedding a live actor and entity into the virtual space.

▪ LAE-MAR is a representation of a living physical or real objects, such as a

human being, animal, or bird, in the Mixed and Augmented Reality (MAR)

content or system

▪ Performing Live actor and entity (LAE) in a virtual environment as

natural as real-world activities

▪ The virtual actor can be reconstructed through machine learning techniques

as a 2D or 3D model. It can interact with embedded entities, which also

attached with the event-callbacks

▪ Using the deep learning techniques to analyze the sensing data/information

and to simulate the virtual scene

▪ Giving an immersive experience to the user by using virtual reality (VR)

technology, which its perception is to experiencing physically present in a

non-physical world

LAE-MAR Execution Engine

Mar Scene

Display, UI

R
en

d
erer

Context Analyzer
LAESensor

LAECamera

P
h

ys
ic

al
 w

o
rl

d
LAE

Event callbacks

LAETracker LAERecognizer

6

DTw Visualization Integrated with LAE-MAR System
The 3 parts of DTw visualization of Maturity Model based on LAE-MAR

LAE-MAR
System

Interface

MAR scene representation

Registration

Viewpoint/Projector

Real Transformation group

Virtual Transformation group

SimulationDigital Asset

Digital Space

Physical Asset

Physical Twin

Mappers

LAE Spatial Mapper

LAE Event Mapper Callbacks

VirtualTG

Associated

Partly associated

LAE

2DLAE Twin

3DLAE Twin

VirtualObject Augmented Scene

Interactive Scene

Dynamic Scene

Static Scene

Shape

Mesh

3D model

Cube

Cone

Interaction system

Animation system

Custom

Chart visualization

Video player

PPT viewer

Control parameters

Operational data

Callbacks

Human (real-world actor)LAE Camera

Real LAE

Physical Model

Data syncAnalysis

HMD controller devices

Context Analyzer

LAE Sensor

Customizable

HTML

canvas/video

element

7

DTw Visualization Integrated with LAE-MAR System
The principle of LAE-MAR maturity models for DTw in LAE-MAR

Name Functionalities LAE Role
System-

design level
Example Details

Static Scene

• Persistent, static, and initial data

connection

• No models of behaviors and dynamics but

process control logics applied

• Seeing/Moving

around
Developer

• Virtual objects for

environment design

• Independent models

• Support 3D model file

(e.g. GLTF)

• Mesh

• Texture model

Dynamic Scene

• An object used to play animation on a

loaded model

• timeAt: is useful when jumping to an exact

time of animation

• deltaTime: is to slow down or fasten the

animation

• Seeing/Moving

around

• Observing

working process

Developer

• Animated operational

equipment

• Dynamic

manufacturing engine

• A model relatively

updated by sensor data

3D model file (e.g. GLTF)

• Required pre-defined

animation clips

Use tools to create

• Blender

• Maya

• Unity3D and etc.

Interactive Scene

• Synchronized and interactive operations

among Digital Twins, but through human

intervention for action

• Allowed user to interact with

• Fire the callback function on demands

• Seeing/Moving

around

• Interactable

(event handling)

Developer

• Interactable cube, cone

• Interactable 3d model

• Model roles can be

repositioning and

click-button event

• Support 3D model file

(e.g. GLTF)

• Interaction for object

relocation

• The interactive object

does not depend on

spatial mapper in the

runtime.

Augmented Scene

• Usually, it is used as a panel to visualize

the state of run-time data or data

configuration

• An object model that is customizable in

order to serve the operational requirement

• Seeing/Moving

around

• Observing data

visualization

• Interactable (

event handling)

Developer and

System

• Built-in component

(HTML canvas, HTML

video)

• Ex. image viewer,

chart graph, ppt

viewer, video player,

etc.

• This can handle models

with their own

functionalities. It mostly

requires a developer to

create/design the panel

8

LAE and LAE-MAR Maturity

Models

9

LAE2D in LAE-MAR

VTG::Virtual Object::2D LAELevel 2

❖ A Live actor in LAE-MAR is a core component

to represent the user as a virtual object. The 2D

LAE is implemented as a human body digital

twin in 2D form.

▪ Deeplab is applied in the tracker module

for image segmentation

▪ The system also embed the WebVR for

allowing the user to experience the digital

world with an HMD device

▪ Implementing virtual reality is a key to

allow the user interaction in the system

LAE Sensor

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event Mapper

Associated

Partly associated

LAE Event Mapper

Renderer Display/UI

LA
E

C
o

n
te

xt

A
n

al
yz

e
r

LA
E-

M
A

R
 S

im
u

la
ti

o
n

Full scene viewport

VR viewport

Interactive
System

WebXR
Interface

LAE Tracker

Image Input

Deeplab V3+

trained Model

Semantic

Segmentation

data of

PASCAL VOC

2012

(Dataset)

Train

Predict

M
u

lti-lab
el m

ask

Human Part Filter82.20% to 83.58%

mlOU

Chromakeying/segmented

image output

Position Matrix

Rotation Matrix

Scale Matrix

Mul

Sy
st

em
 c

o
n

tr
o

l E
n

v.

LAE

10

LAE3D in LAE-MAR

VTG::Virtual Object::LAE3DLevel 2

▪ LAE-MAR system provides various

possibilities for representing the physical

human as a digital live actor. Instead of a

2D live actor twin, we can construct a 3D

live actor twin in real-time.

▪ With Human Mesh Recovery (HMR), the

system can predict the 3D body poses from

2D image input. The skeleton is mapped

along the predicted poses to represent a

physical human as a 3D form in the MAR

scene.

▪ In order to support the 3D model structure

in ThreeJS, the HMR output must be

translated accordingly to the ThreeJS

object

LAE Sensor

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event Mapper

Associated

Partly associated

LAE Event Mapper

Renderer Display/UI

LA
E

C
o

n
te

xt

A
n

al
yz

e
r

LA
E-

M
A

R
 S

im
u

la
ti

o
n

Full scene viewport

VR viewport

Interactive
System

WebXR
Interface

LAE Tracker

Image Input

Human Mesh

Recovery (HMR)

3D model of

the human

body
(Dataset)

Train

model.predict()

threeJs model

converter

Usable 3 model for

ThreeJS scene

Joints,

Verts,

Joints3d

Position Matrix

Rotation Matrix

Scale Matrix

Mul

Sy
st

em
 c

o
n

tr
o

l E
n

v.

LAE

11

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event Mapper

Chromakeying
(deeplab)

hmr
(Human Mesh

Recovery)

LAE Sensor

Accelerometer and
gyroscope /
Sensor-event

listener

Position Matrix

Rotation Matrix

Scale Matrix

Mul

VRDisplays /
Head transform

WebXR

Interactive System

Raycaster Calc

VR Display Renderer

SittingToStandingTransform

Event callbacks

x

z

y

Viewpoint (for screen display)

Virtual Object (1)

Virtual LAE

MAR Scene (3D Virtual Scene)

Virtual Object (2)
Core modules

contents of stereo display

LAE Spatial and Event Control Functions

Event Database

Object ID Event Type Return

marObj1
Initial event handler

Virtual object
Click, Hover, etc..

marObj2
Initial event handler

Virtual object
Click, Hover, etc..

12

Static Scene Maturity Models in LAE-MAR

VTG::Static Scene

❖ This static model is purposely designed as a virtual object.

Thus, this model respects the following roles:

▪ Load 3D model as an input

▪ Persistent, static, and initial data connection (Position,

Scale, Rotation)

▪ In runtime, the loaded model never request for

change/update

▪ After spatial mapping, the model is added to the LAE-

MAR scene

No update request in runtime

(not related with user interaction)

3D Model Loader
(ex. iCeramic room model)

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event Mapper

User Input

Renderer Display/UI
Associated

Partly associated

LA
E

C
o

n
te

xt

A
n

al
yz

e
r

Sy
st

em
 c

o
n

tr
o

l E
n

v.

LAE
LAE Sensor

LAE Camera

Position Matrix

Rotation Matrix

Scale Matrix

Mul

LA
E-

M
A

R
 S

im
u

la
ti

o
n

Interactive
System

WebXR
Interface

13

Dynamic Scene Maturity Models in LAE-MAR

VTG::Virtual Object::Dynamic Scene

❖ Main functionality to simulate the state of physical

operating equipment to MAR Scene model as realistic as

possible. The weight and time scales are used for

simultaneous animations on the object.

▪ Requires animated 3D objects (ex. GLTF)

▪ The animation is updated based on control parameters

or sensor data, which depends on logic definitions

▪ Animation system takes part in controlling series of

keyframes like play, pause, loop, or atTime
Sy

st
em

 c
o

n
tr

o
l E

n
v.

LAE
LAE Sensor

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event Mapper

Associated

Partly associated

LAE Event Mapper

Renderer Display/UI

Update request in runtime

LA
E

C
o

n
te

xt

A
n

al
yz

e
r

LA
E-

M
A

R
 S

im
u

la
ti

o
n

Animation
System

Position Matrix

Rotation Matrix

Scale Matrix

Mul

Animated
3D Model (ex. GLTF)

User Input

Operational data (sensor)
Control parameters

Manufacturing

Sensor data sync

Manufacturing

Context Analyzer

14

Interactive Scene Maturity Models in LAE-MAR

VTG::Virtual Object::Interactive Scene

❖ Multiple objects in a MAR Scene are federated each other

and perform mutual interactions for their cross-dependent

operations. However, this interactive model merely

receives the action from user interaction.

▪ It requires LAE to perform actions (moving object,

click, etc.)

▪ Mainly focused on Event handling by the event

mapper itself

▪ Helpful in creating such a setting/configuration panel.

LAE Sensor

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event Mapper

Associated

Partly associated

LAE Event Mapper

Renderer Display/UI

The update based on user

interaction

3D Model (ex. GLTF)
Cube, Cone, Plane

User Input
LA

E
C

o
n

te
xt

A

n
al

yz
e

r

LA
E-

M
A

R
 S

im
u

la
ti

o
n

Devices (HMD,
Controllers, etc.)

Interactive
System

Raycaster Calc

Full scene viewport

VR viewport

Sy
st

em
 c

o
n

tr
o

l E
n

v.

LAE

Position Matrix

Rotation Matrix

Scale Matrix

Mul

Callbacks

15

Augmented Scene Maturity Models in LAE-MAR

VTG::Virtual Object::Augmented Scene

❖ A particular object wrapper model can be customizable

according to utilities or types of visualization:

▪ Developer/System level for creating a built-in virtual,

augmented object as a panel floating in space

▪ In runtime, augmented model listens to the user

interaction for repositioning in spatial-mapper module

▪ If the augmented model contains an interactive object,

it may listen to the event handler in the event-mapper

module

LAE Sensor

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event Mapper

Associated

Partly associated

LAE Event Mapper

Renderer Display/UI

LA
E

C
o

n
te

xt

A
n

al
yz

e
r

LA
E-

M
A

R
 S

im
u

la
ti

o
n Animation

System

Keyframe
Tracks

Built-In
Models

&
Transform

group
(Panel Wrapper)

Operational data (sensor)
Control parameters

Manufacturing

Sensor data sync

Manufacturing

Context Analyzer

User Input

Position Matrix

Rotation Matrix

Scale Matrix

Mul

Sy
st

em
 c

o
n

tr
o

l E
n

v.

LAE

Callbacks

16

Implementation & Results

17

LAE-MAR Node Definition
LAE2DModel

LAEModel :: 2DLAEModel

Attr/Method Type Accessibility Description

LAE2DModel() LAE2DModel Protected Constructor function

id String Public Identifier

hidden Boolean Public Hidden in a virtual scene

entity HTMLNode Public The entity that stores the HTML node information

3Dobject 3Dobject Public A virtual object used for a virtual scene

type String Public The default type is 2DLAE (2d-live-actor)

originalImg Image Private A variable for the original image from the camera

maskImg Image Private Mask image generated from Deeplab model

chromakeyingImg Image Private Final output after filtering the live actor body

rotation Vector3 Public A matrix for rotation in a scene

position Vector3 Public A matrix for a position in a scene

scale Vector3 Public A matrix for scale in a scene

processDeeplab() Void Private Function to execute the model for image segmentation

processAudio() Void Private Process the audio if it exists

bodyFilter() Image Private
Filter the body from original image with segmented

mask

mappingTexture() Void Private A function to map a virtual object with texture

setData() Void Public Set the sequences of image/audio as the input

getImgData() Void Public Access function for the segmented image

getAudioData() Audio Public Access function for the audio

❖ On the physical side, LAE2DModel composes of required sensors,

camera, tracking technique, and recognizing technique to output as a

streaming texture on a plane, which mapping with a virtual object

designed to represent as a live actor in 3D space

LAE

Deeplab
(Chromakeying)

Body filter

Texture Mapper

Object Transform

Scene Representation

Audio*

• Segmeted mask-image

• Mapping mask with origin image
• Output the chromakeying

• Mapping texture to a virtual object

Apply the transform matrix
to the object

18

LAE-MAR Node Definition
LAE3DModel

❖ On the physical side, LAE3DModel composes of required sensors,

camera, tracking technique, and recognizing technique to output as a

constructed 3D model, which mapping with a virtual object designed to

represent as a 3D live actor

LAE

Human Mesh Recovery (HMR)

(3D body model)

Threejs-support
model converter

Object Transform

Scene Representation

Audio*

A constructed 3D model

Apply the transform matrix
to the object

Joints,

Verts,

Joints3d

LAEModel :: 3DLAEModel

Attr/Method Type Accessibility Description

LAE3DModel() LAE3DModel Protected Constructor function

id String Public Identifier

hidden Boolean Public Hidden in a virtual scene

entity HTMLNode Public The entity that stores the HTML node information

3Dobject 3Dobject Public A virtual object used for virtual scene

type String Public Default type is 3DLAE (3d-live-actor)

joints Array<vector2> Private A variable to store 2D joints of a body from an image

verts Array<vector3> Private The vertices information for a predicted body model

joints3D Array<vector3> Private 3D joints of a body for skeleton behaviors

normals Array<vector3> Private Compute the normal for a 3D model to reflex with light

faces Array<vector3> Private The faces of vertices

rotation Vector3 Public A matrix for rotation in a scene

position Vector3 Public A matrix for a position in a scene

scale Vector3 Public A matrix for scale in a scene

processHMR() Void Private
Function to execute the model for constructing a 3D

model from 2D image

processAudio() Void Private Access the audio if it exists

threejsModelConverter() 3DModel* Private Translate the joints3d and vertices to a 3D model

setData() Void Public Set the sequences of 3d model data/audio as the input

getModelData() 3DModel* Public Access function for the constructed model

getAudioData() Audio* Public Access function for the audio

19

LAE-MAR Node Definition
LAECapturer

❖ LAECapturer is responsible for accessing the connected camera

and dealing with the image properties. The other modules can use

this capturer data for different purposes.

LAECapturer

Attr/Method Type Accessibility Description

LAECapturer() LAECapturer Protected Constructor function

id String Public Identifier

enable Boolean Public Enabling the process of capturing

entity HTMLNode Public The entity that stores the HTML node information

type String Public
Define the type of camera (depth camera, general

camera)

cameraId number Public Set an id of a camera to be used

resolution (number, number) Public Obtain Width and Height

mode string Public Define image mode. E.g., RGB or black-white

imgData Image Public Stores the sequentially captured images from a camera

setRawData() Void Public Read the data directly from the camera

getData() Any Public Access function for the captured data
LAE

Video frame

Depth image

Skeleton

Audio information

• General camera

• Depth camera

• 360o camera

• Etc.

LAECapturer

LAEGeneralCamera

LAEDepthCamera

LAE360Camera

20

LAE-MAR Node Definition
LAETracker

❖ LAETracker functions to read the image, laeCapturer’s output,

and outputs the data based on the type of the tracking method.

In addition, the output can be of various types depending on the

tracking technique—for instance, the tracker using for 2D LAE

or using for 3D LAE.

LAETracker

Attr/Method Type Accessibility Description

LAETracker() LAETracker Protected Constructor function

id String Public Identifier

enable Boolean Public Enabling the process of tracking

entity HTMLNode Public The entity that stores the HTML node information

type String Public Define the type of tracker (chromakeying or HMR)

rawData Any Private Input data from sensor/capturer

deeplabModelSrc Object Private Path of pre-train Deeplab model to be used

originalImg Image Private A variable for the original image from the camera

maskImg Image Private Mask image generated from Deeplab model

chromakeyingImg Image Private Final output after filtering the live actor body

hmrModelSrc Object Private Path of pre-train HMR model to be used

joints Array<vector2> Private A variable to store 2D joints of a body from an image

verts Array<vector3> Private The vertices information for a predicted body model

joints3D Array<vector3> Private 3D joints of a body for skeleton behaviors

normals Array<vector3> Private Compute the normal for a 3D model to reflex with light

deeplabPredict() Object private
A function to run the pretrained Deeplab model and do

perdition

hmrPredict() Image private
A function to run the pre-trained HMR model and do

perdition

setRawData() Void Public Set the sensed data/captured data as the input

getResultData() Any Public Access function for the tracked data

LAECapturer

Output

Original image

LAETracker
Chromakeying HMR

21

LAE-MAR Node Definition
LAESensor

❖ In LAE context, LAESensor connects directly to the sensor or

device and prepares the data for the recognizer module, which

handles event listeners.

LAESensor

Attr/Method Type Accessibility Description

LAESensor() LAESensor Protected Constructor function

id String Public Identifier

enable Boolean Public Enabling the process of capturing

entity HTMLNode Public The entity that stores the HTML node information

type String Public Specify the type of the device

rawData Any Private Stores the sensing data

setRawData() Void Public Read the data directly from the camera

getData() Any Public Access function for the sensing data

Sensor Devices

HMD sensors Controller sensors

LAE Sensor

Latitude,

longitude

Moving direction

Camera

Touch sensing

Acceleration

Velocity

Motion

Distance depth

Gyroscope

22

LAE-MAR Node Definition
LAERecognizer

❖ LAERecognizer tries to understand the targets from the input data

and converts it to a piece of understandable information that can be

used for LAE. In this case, LAE using this module to recognize the

data of a device sensor, which is translated to an event listener

LAERecognizer

Attr/Method Type Accessibility Description

LAERecognizer() LAERecognizer Protected Constructor function

id String Public Identifier

enable Boolean Public Enabling the process of capturing

entity HTMLNode Public The entity that stores the HTML node information

type String Public Specify the type of event listener

rawData Any Private Sensing data for being recognized

target Any Public Definition of target

filter Void Private
Function filtering or post-processing the sensed and

recognized data

targetHandler() Void Public Telling that the target is activated

setRawData() Void Public Read the data directly from the sensor module

getData() Any Public Access function for the recognized data

LAE Recognizer

LAE Sensor

Raw Sensing data

Oculus Rift
Controller

Filter(btn1) #1 Target#1

Filter(btn2) #2 Target#4

Filter(btn3) #3 Target#3

Sensing Info.
Filter() #.. …

Filter() #N Target#N

Event Information

• Event Targets (ID)

• Event Function

23

LAE-MAR Node Definition
LAESpatialMapper

❖ In order to bring a real object into a virtual scene, there must

be a functional node, LAESpatialMapper, to map a

composed model with a virtual object in the MAR scene

LAESpatialMapper

Attr/Method Type Accessibility Description

LAESpatialMapper() LAESpatialMapper Protected Constructor function

id String Public Identifier

entity HTMLNode Public
The entity that stores the HTML node

information

mappingLAEObj Object Public
A real LAE object to be mapped with MAR

object

mappingMARObj Object Public A virtual MAR object in a scene

position Vector3 Public (X, Y, Z) is a vertex for positioning

scale Vector3 Public
(width, height, depth) is for seizing the virtual

object in space

rotation Vector3 Public (X, Y, Z) is a rotation based on the direction

mappingSpatialInfo() Model Private
Mapping the spatial information with a virtual

object

setData() void Public Read the data directly from the sensor module

getData() Any Public Access function for the spatial information data

y

z

x

Changing

position and

orientation

Virtual Object

LAE Object

LAE Spatial Mapper
Position Matrix

Rotation Matrix

Scale Matrix

Mul

24

LAE-MAR Node Definition
LAEEventMapper

❖ The events are all defined in the database, which describes the

action of each object. Thus, the LAEEventMapper is just mapping

a callback() function to an object that may return the model itself

LAEEventMapper

Attr/Method Type Accessibility Description

LAEEventMapper() LAEEventMapper Protected Constructor function

id String Public Identifier

entity HTMLNode Public
The entity that stores the HTML node

information

type String Public Specify the type of event listener

targetObjects [IneractiveObject] Public An object that listens to the event trigger

getIntersection() Void Private
A raycaster function for recognizing the

intersection

eventHandler() Callback Public
Handle the event depending on the action

and target object; return the target

initialHandler() Callback Public
Handle the event at the initial stage; return

the target

getData() Any Public Access function for the data

LAE Event Mapper

Event Database

Object ID Event Type Return

marObj1
Initial event handler

Virtual object
Click, Hover, Touch, …

marObj2
Initial event handler

Virtual object
Click, Hover, Touch, …

Virtual Object (1) Virtual Object (2)

Click*
Touch*

LAE Sensor

LAE Recognizer

Interaction System

Callback()

25

LAE-MAR Node Definition
LAEProjectionDisplay

LAEProjectionDisplay

Attr/Method Type Accessibility Description

LAEProjectionDisplay() LAEProjectionDisplay Protected Constructor function

id String Public Identifier

entity HTMLNode Public
The entity that stores the HTML node

information

type String Public
Type of camera (Perspective,

Orthographic)

control String Public Screen control type (Orbit, Map, etc.)

left Number Public Left margin with a scale (0-1)

right Number Public Right margin with a scale (0-1)

width Number Public Width screen with a scale (0-1)

height Number Public Height screen with a scale (0-1)

position Vector3 Public
Define a standing position of a

projector

fov Number Public
Field of view, which is a maximum

area for camera to image

nearDistance Number Public The nearest distance to be captured

farDistance Number Public The farthest of distance to be captured

lookAt Vector3 Public Camera to look at

getData() Any Public
Access function for the projection

display data

❖ LAEProjectionDisplay is used to describe where the camera

should be put or looked at. There are properties applicable to

project the scene, where it is considered as a view of interest.

▪ Perspective

▪ Orthographic

26

LAE-MAR Node Definition
LAESceneRepresentation

LAESceneRepresentation

Attr/Method Type Accessibility Description

LAESceneRepresentation() LAESceneRepresentation Protected Constructor function

id String Public Identifier

entity HTMLNode Public
The entity that stores the html node

information

autoUpdate Boolean Private

Default is true. The renderer checks

every frame if the scene and its

objects need matrix updates

background Object Public It can be set to a color or texture

children [VirtualObject] Private

Store the children node, which also

represents the physical and virtual

objects

addChild() Void Public Add a child to this scene node

removeChild() Void Public Remove a child from this scene node

removeAllChild() Void Public Remove all children node

getChildren() [VirtualObject] Public Obtain all containing node, children

getData() Any Public
Access function for the scene

representation data

❖ LAESceneRepresentation plays a critical part in

constructing the entire scene virtually. In addition, it is

designed to cover the LAE Node and MARNode and simulate

them into virtual objects under the control of the LAE spatial

mapper and Event mapper.

LAE & DTw

Spatial Control

LAE Event Control

Digital Twin Models

LAE

Virtual Scene

MAR Event

MAR Behavior

LAE Tracker

LAE Capturer

LAE Sensor

LAE Recognizer

27

Node Relation
LAE Node Relation

<LAE2DModel id="laemodel1“ laeCaputurer="laecapture1"
laeTracker="laetracker1” laeRecognizer="laereconizer1“ />

<LAECapturer id="laecapture1" type="general-camera"
cameraId="0" resolution="512x512" mode="rgb“ />

<LAETracker id="laetracker1" type=“chromakeying“ />

<LAERecognizer id="laereconizer1" type="oculus-controller“ />

<LAESpatialMapper id="laespatialmapper6" model="laemodel1"
marObject="object1" position="1 1 1" scale="0.5 0.5 0"
rotation="0.01 0.6 0.01“/>

<MARObject id="object1" type="live-actor“/>

LAE Sensor

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event MapperLAE Event Mapper

Renderer Display/UI

LAE Context Analyzer

LA
E-

M
A

R
 S

im
u

la
ti

o
n

Interactive
System

WebXR
Interface

Sy
st

em
 c

o
n

tr
o

l E
n

v.

LAE

LAE Model

id

id

id

id

MAR Model
(Virtual Object – live actor)

id

Mar Scene Representation

Mar Scene Representation

28

Node Relation
LAE and DTW Node Relation (Ex. Dynamic DTW node)

LAE Sensor

LAE Camera

LAE Tracker

LAE Recognizer

LAE Spatial Mapper

LAE Event MapperLAE Event Mapper

Renderer Display/UI

LAE Context Analyzer

LA
E-

M
A

R
 S

im
u

la
ti

o
n

Interactive
System

WebXR
Interface

Sy
st

em
 c

o
n

tr
o

l E
n

v.

LAE

id
id id

id

LAE Model

MAR Object
(Virtual Object)

id

<LAE2DModel id="laemodel1“ laeCaputurer="laecapture1"
laeTracker="laetracker1” laeRecognizer="laereconizer1“ />

<LAECapturer id="laecapture1" type="general-camera"
cameraId="0" resolution="512x512" mode="rgb“ />

<LAETracker id="laetracker1" type="chromakeying“ />

<LAERecognizer id="laereconizer1" type="oculus-controller“ />

<LAESpatialMapper id="laespatialmapper2" model="laemodel1"
marObject="dtwmodel2" position="1 1 1" scale=“1 1 0"
rotation=“0 0 0“/>

<MARObject id="object1" type="live-actor“/>

Mar Scene
Representation

Mar Scene Representation

DTW Model

Animated
3D Model (ex. GLTF)

Animation
System

Manufacturing

Context Analyzer

Manufacturing

Sensor data sync

Animation
Parameters

Runtime (JS)

MAR Dynamic Object
(Virtual Object)

id

<DTWModel id="dtwmodel2" modelFormat="gltf"
src="/templates/3Dmodels/tapecasting.glb"/>

<LAESpatialMapper id="laespatialmapper1" model="laemodel1"
marObject="object1" position="1 1 1" scale="0.5 0.5 0"
rotation="0.01 0.6 0.01“/>

<MARDynamicObject id="sceneobject1“ type="3d-model“ deltaTime="0.016"
timeAt="0.4“ />

id

29

Implementation Results
Use case: Getting start with scene creation

Create your first scene

<script src="templates/LAELib/dist/bundle.js"></script>

▪ Download the LAELib

▪ Import the LAE library to JavaScript tag

<!-- MAR-LAE node -->
<MAR-LAE id="lae" isShownFPS="true" isShownConfig="false">

<LAEProjectionDisplay>
<LAEProjector id="projector"

control="orbit"
type="perspective-projector"
left="0" bottom="0" width="1" height="1"
position="0 4 5"
fov="75"
nearDistance="0.1"
farDistance="100000"> </LAEProjector>

</LAEProjectionDisplay>
<MARSceneRepresentation id="mar-scene">

<!-- MAR Object -->
<MARStaticObject id="staticbject1" type="3d-model"></MARStaticObject>

</MARSceneRepresentation>
<!-- Model -->
<DTWModel id="laemodel1" src="/env-model.gltf"></DTWModel>
<!-- Mappers -->
<LAESpatialMapper id="laespatialmapper1"

model="laemodel1"
marObject="staticbject1"
position="1 1 1"
scale="0.5 0.5 0"
rotation="0.01 0.6 0.01">

</LAESpatialMapper>
</MAR-LAE>

▪ Create a simple scene in <body> html tag with 3d objectSystem-support libraries

Internal libraries for DTw-LAE-MAR

30

Implementation Results

Virtual Object::2D LAE

<!-- MAR-LAE node -->
<MAR-LAE id="lae" isShownFPS="true" isShownConfig="false">

<MARSceneRepresentation id="mar-scene">
<!-- MAR object for lae -->
<MARObject id="object1" type=“2d-live-actor"></MARObject>

</MARSceneRepresentation>
<!-- LAE Model -->
<LAE2DModel id="laemodel1"

laeCaputurer="laecapture1"
laeTracker="laetracker1"
laeRecognizer="laerecognizer1"

></LAE2DModel>
<LAECapturer id="laecapture1"

type="general-camera"
cameraId="0"
resolution="512x512"
mode="rgb">

</LAECapturer>
<LAETracker id="laetracker1" type="chromakeying"> </LAETracker>
<LAERecognizer id="laerecognizer1"

type="oculus-controller">
</LAERecorgnizer>
<!-- Mappers -->
<LAESpatialMapper id="laespatialmapper1"

model="laemodel1"
marObject="object1"
position="1 1 1"
scale="0.5 0.5 0"
rotation="0.01 0.6 0.01">

</LAESpatialMapper>
</MAR-LAE>
<script>

var laeMapper = document.getElementById("laespatialmapper1");
laeMapper.setAttribute("scale", "1 1 1");

</script> 2D LAE DEMO

31

Implementation Results

Virtual Object::3D LAE

<!-- MAR-LAE node -->
<MAR-LAE id="lae" isShownFPS="true" isShownConfig="false">

<MARSceneRepresentation id="mar-scene">
<!-- MAR object for lae -->
<MARObject id="object1" type=“3d-live-actor"></MARObject>

</MARSceneRepresentation>
<!-- LAE Model -->
<LAE3DModel id="laemodel1"

laeCaputurer="laecapture1"
laeTracker="laetracker1"
laeRecognizer="laerecognizer1">

</LAE3DModel>
<LAECapturer id="laecapture1"

type="general-camera"
cameraId="0"
resolution="512x512"
mode="rgb">

</LAECapturer>
<LAETracker id="laetracker1" type="hmr"> </LAETracker>
<LAERecognizer id="laerecognizer1"

type="oculus-controller">
</LAERecorgnizer>
<!-- Mappers -->
<LAESpatialMapper id="laespatialmapper1"

model="laemodel1"
marObject="object1"
position="1 1 1"
scale="0.5 0.5 0"
rotation="0.01 0.6 0.01">

</LAESpatialMapper>
</MAR-LAE>
<script>

var laeMapper = document.getElementById("laespatialmapper1");
laeMapper.setAttribute("position", "1 1 2");

</script> 3D LAE DEMO

32

Implementation Results

Virtual Object::Interactive Scene
<MAR-LAE id="lae" isShownFPS="true" isShownConfig="false">
<MARSceneRepresentation id="mar-scene">

<MARObject id="object1" type="3d-live-actor"></MARObject>
<MARInteractiveObject id="object2" type="cube"></MARInteractiveObject>

</MARSceneRepresentation>
<LAE3DModel id="laemodel1"

laeCaputurer="laecapture1"
laeTracker="laetracker1"
laeRecognizer="laerecognizer1">

</LAE3DModel>
<DTWModel id="laemodel2"></DTWModel>
<LAECapturer id="laecapture1"

type="general-camera"
cameraId="0"
resolution="512x512"
mode="rgb">

</LAECapturer>
<LAETracker id="laetracker1" type="chromakeying"> </LAETracker>
<LAERecognizer id="laerecognizer1"

type="oculus-controller">
</LAERecognizer>
<!-- Mappers -->
<LAESpatialMapper id="laespatialmapper1"

model="laemodel1"
marObject="object1"
position="1 1 1"
scale="0.5 0.5 0"
rotation="0.01 0.6 0.01">

</LAESpatialMapper>
<LAESpatialMapper id="laespatialmapper2"

model="laemodel2"
marObject="object2"
position="1 2 0"
scale="1 1 1"
rotation="1 1 1">

</LAESpatialMapper>
<LAEEventMapper id="laeeventmapper1" marObject="object2" type="click"> </LAEEventMapper>

</MAR-LAE>
<script>
function onClickEvent(evt, a){
console.log("I'm fired")

}
$('#laeeventmapper1').on(“onclick", onClickEvent);

</script>

Interactive Scene Demo

33

Implementation Results

(A) Navigation through the

manufacturing environment

(B) Focusing on a

machine block

(C) The stereo display in

VR device (HMD)

In the Figure, (A) illustrates the overview of machine blocks and the navigation of routing to a specific block, which facilitates the

ease of seeing details and controlling the system. As well, (B) describes that in a machine block, the process of manufacturing

DTw models with system control panels. The LAE representation can be formed in space as a live actor to play around the scene

with the ability of interaction through controller devices. In (C), the system provides two renders for screen display and VR

display that the user in real-world can manage and watch the entire system process by using HMD.

LAE and MAR Scene representation in virtual scene

